エレクトロニクス

 FLIRの画像からどうやらCPU表面と上下方向に(+分解時のグリスの様子から左右にも)傾いて接触しているのがわかりました。CPUへ冷却ヘッドを固定するパネルが片側で引っ掛けているだけで勝つ上下ネジ2本だけで固定しなければならないためです。
DRAM側のヒートシンク赤外画像。
 そもそもはDRAMの温度を確認しようとしてヒートシンクの側面を撮影したところ上の写真の通りDRAMは冷えているものの、6本あるヒートパイプが下側4本しか熱を伝えていないらしいとわかったからです。
裏側のパネルをフィリップスではなく六角3点セムスネジに取替。
TRUSCOのB078-0312を使用し2.5mmのWERAレンチで締め直しました。これで土台側はガチガチに固定されたと思います。
おまけグリスの貼り付き具合。
 やはりというかなんというか、グリス自体は上下方向への傾きはなさそうですけど今度は左右(上の写真では前後)方向でも傾いているのがわかりました。この理由は明白で写真手前側の金具にプレートを引っ掛けているためで奥側は浮き上がっているようです。安直な対策は奥側のグリスを厚くする方法ですけど、手持ちグリスの残りが少ないため追加注文分が届くまでは作業できません。また表側の固定で必要な短い3点セムスネジも持っていないため注文しました。とりあえずオマケグリスは除去してThermal Grizzly Kryonautを薄く塗り直しました。接触している部分の熱抵抗は下がると思います。まずは先に上下傾斜対策から確認します。
上下傾斜対策後のヒートパイプ温度。
 Turbo boostを無効にするかオーバークロックでも短時間だけならばファン無しで稼働できるので6本全てのヒートパイプに熱が通っているか確認しました。どうやら組み立て方を少し工夫するだけで上下傾斜は無くせるようです。左右は追加部品が届いてから再々改造する予定です。

 というか、このヒートシンク、宣伝文句はMax. TDP 180 Wだそうです。メーカーサイトAXP-200 “Muscle" Thermalright(http://www.thermalright.de/en/cooler/30/axp-200-muscle)による。しかし、実際には100Wを越えようと思ったら相当な組立精度が必要です。私には付属部品(特にしょぼいグリスとごく普通のISO M3ネジ)だけではメカ的に厳しいと思いました。Corsairの簡易水冷のほうがラジエーターファン固定がインチネジだったり大雑把(?)なところはありましたけど組立は楽(あまり精度を気にしなくてもよく冷える)でした。

 同例を調べていてkakaku.comのレビューでこの製品ずばりでは無いですけどシリーズであまり冷えないという記事TDP180W対応は盛りすぎ(http://review.kakaku.com/review/K0000941367/ReviewCD=1012848/)を見ましたが、たぶんCPU表面とヘッドが十分に密着しておらず傾いて部分接触で設置しているものと想定します。が、普通は高価なFLIRなどを持っていないのでどっち方向にどれだけ補正するかなど分かりません。簡単に見分けるにはCPUに載せるヘッドを2点ではなく4点で固定している方が組立は楽だと思います。(…それでもメカ的にどう水平を出すかはノウハウです。)

つづく。

エレクトロニクス

 ここのWordPressのテーマLuxeritasを3.3.4から3.3.5へアップデート作業を行いました。軽い機能拡張や不具合修正が入ったようです。詳細は開発元のLuxeritas 3.3.5 リリース(https://thk.kanzae.net/wp/release/t6301/)を見てください。

 このサイトでは使用していない機能ばかりの変更なので影響は無いと思います。

エレクトロニクス

 水冷で10ヶ月以上使っていたためかBIOSのCPU制御がそっち向けに学習してしまったのか高負荷状態でやや不安定な挙動をするようになったのでBIOSクリアを兼ねてアップデートしました。

 また、どこかのサイト(たぶんkakaku.comのレビュー欄)で見つけたASUSのBIOS画面をキャプチャするにはUSBストレージ(USBメモリでもSDカードリーダでも)をつないだ状態でF12を押せばいいというのがわかりファン設定などを簡単に保存できるようになりました。デジカメではグレア液晶の映り込みがひどいのと保存容量を食うので効率よくデータを残せませんでした。

 BIOSをクリアした上でファン制御を再設定して一旦高負荷試験を掛けると、以下のように瞬間最大76℃程度で収まりました。
室温25℃で高負荷プログラム(ベンチではなく実作業)実行時。
ファンに付属のグリスを使い適当に塗ったのでこんなものでしょうか?Thermal Grizzly Kryonautに変えてもっと薄くしたりCPU殻割りをすれば更に下がるとは思いますけどコストが掛かるのですぐには対応できません。

 CPUの挙動やBIOSの設定を眺めていて気づいたのが、8700Kを無理やりフルパワーで回さなくても十分に高速で電力を下げたほうが得ではないか?という点です。昨年8700Kにリプレースするまでに使っていたCore i7-3570KがPassmarkで7161に対して8700Kは15607で2.18倍。仮に8700KをMax.4.7GHzではなくTurbo boostオフで3.7GHzだけで回した場合3.7/4.7=0.79で約20%ダウン、余裕をみて30%ダウンで計算すると15607*0.7/7161=1.53倍の性能向上は得られることになります。普段はTurbo boostを切っておいて必要なときだけONしてもパフォーマンス的には問題なさそうです。
室温25℃でCPU 31℃、よく冷えています。
さらに、DRAMは節電のためにDDR4-2133にしていましたが、同じ電圧(1.2012V)で2666MHzにできるようなのでこちらはDDR4-2666へ変更しました。周波数だけ変えると何故か1.344Vになったので上記画像のように手動で1.2012Vに設定しました。
 FLIRで見る限りトップフロー型空冷ファンのAXP-200+ML120へ変えたことでDRAMは冷え切っているので冷却の心配はありません。簡易水冷ではVRMやDRAMはケースファンでしか冷やせませんでした。

 DDR4-2666についてはDDR4メモリの“本当の性能”をあらゆる角度から徹底的に検証してみた(https://akiba-pc.watch.impress.co.jp/docs/sp/1083431.html)が参考になりました。